"The Next Generation of Power & Energy measurements"

Paul Wright NPL, UK (JRP Coordinator)

Talk Overview

- Social and Economic Drivers.
- Governmental/Industrial Response.
- Metrology Challenges.
- JRP Objectives.
- The Project Overview.
- User Committee.

Project Impact Flow

Climate change – reduce green-house gas emissions.

High quality electricity supply – free from disturbances and interruptions.

Energy gap – new electricity generation plant required to replace nuclear etc.

Security of Supply – Diversification of energy sources.

- ½ of CO₂ emissions are due to electricity usage.
- Demand side energy efficiency can make a huge contribution to savings.
- Energy savings of 30% could save 1000 x 1GW generator plants world-wide – 50% of the electrical CO₂ production.
- Energy efficiency requires accurate power measurements to quantify savings and iteratively improve designs.

(source IEC)

Development & installation of renewable generation plant/smart grids

Formulation of normative standards for products & equipment.

CE

Regulation of power quality through the EMC directive.

Development & Installation low loss transmission & distribution equipment.

CO₂ Targets and Renewable Growth

- Renewable energies target: A binding 20% share of renewable energy sources in overall EU energy consumption by 2020
- Likely to mean 6 fold increase in onshore wind turbines and 50 fold increase in offshore wind
- Growth of micro-generation and Combined Heat & Power (CHP)
- Smart Grids to integrate renewables.
- HVDC Links.

Power Quality: International Standards

Current Harmonics IEC61000-3-2 IEC61000-4-7 IEC61000-3-12 G5/4 ER G59/1 IEC 61000-3-6

Flicker

IEC61000-3-3 IEC61000-4-15 IEC61000-3-11 IEC60725 IEC 61000-3-7 Power/PQ Measurement *IEC61000-4-30 IEEE 1459 IEEE 1547 IEC 61400-21*

Interharmonics

IEC61000-4-13

<u> CO_2 Reduction \rightarrow Power Metrology</u>

- High efficiency products require electrical power measurements to **assess efficiency**.
- Often these measurements are difficult to make due to **complex waveforms**.
- Renewable plant waveforms can be complex and require measurements in hostile environments (High voltage – noisy).

→ On-Site Measurements

The Cost of Incorrect PQ Testing

To the Electricity Industry

Generated Power in the UK is about 200TWh per year (€ 15Bn).

Power Generation and Distribution Plant is Valued at € 50Bn. **To Manufacturing Industry**

UK market for Computers € 18Bn

UK Market for TVs € 15Bn

White Goods € 1bn

JRP Objectives

- Accurately measure highly distorted, non-stationary waveforms.
- Develop mathematical transforms to accurately analyse these waveforms.
- Measurements on fixed installations under hostile conditions.
- Determine the propagation of uncertainties through complex mathematics.

JRP Challenges

- Pan-European challenges.
- Requires a new measurement infrastructure.
- Harmonized approach to calibrations and testing.
- A coordinated European Approach providing Critical Mass.

On-Site Metrology Challenge

- Synchronisation issues.
- Noise.
- Variable frequency Grid limits are ±1 %.
- Fluctuating harmonics.
- Transducers and Digitisers Portable for field measurements + High accuracy.
- Complexity not just accuracy.

The Power and Energy JRP

- April 2008 to March 2011.
- 16 NMI partners.
- Approx 30% EU FP7 Funding.
- 7 Work Packages.

Nations of NMIs Participating in the JRP

7 Work Packages

WP	Title	MM	Deliverables
WP1	JRP Management and Coordination	8	8
WP2	Metrology Grade Digitising Technology for Power Quality Measurements	55	6
WP3	Precision Transducers For Laboratory Measurements of Power and Power Quality.	53	3
WP4	The Development of Accurate Sampling Techniques and Analysis Algorithms in Support of Power Quality	55	3
WP5	The Development and Characterization of High Current and High Voltage Transducers	58	4
WP6	A Harmonised Methodology and Implementation of the Traceable Measurement of Power Quality Parameters	47	5
WP7	IMPACT: exploitation, dissemination and knowledge transfer	4	6

Workpackages and deliverables

Impact - Exploitation, KT and Dissemination activities

Impact in Images

Energy Saving Evaluation

Renewable Energy Performance

Transmission & Distribution Efficiency

Power Quality Compliance

Reduced Blackouts

Accurate Electricity Metering

Reduced Failures

Summary

- Challenges for energy Industry low emissions, high efficiency, Power Quality.
- Research is driven by needs of industry and regulation.
- Complexity not just accuracy.